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Development of novel and effective therapeutics for treating various cancers is probably the most congested and
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clinical approval each year from the FDA. Targeting cancer cells and nonmalignant cells unavoidably changes the tumor
microenvironment, and cellular and molecular components relentlessly alter in response to drugs. Cancer cells often
reprogram their metabolic pathways to adapt to environmental challenges and facilitate survival, proliferation, and
metastasis. While cancer cells’ dependence on glycolysis for energy production is well studied, the roles of adipocytes
and lipid metabolic reprogramming in supporting cancer growth, metastasis, and drug responses are less understood.
This Review focuses on emerging mechanisms involving adipocytes and lipid metabolism in altering the response to
cancer treatment. In particular, we discuss mechanisms underlying cancer-associated adipocytes and lipid metabolic
reprogramming in cancer drug resistance.
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Introduction
Most types of cancer exploit lipid and cholesterol to meet their 
unlimited energy demands (1). Lipid catabolism is achieved 
through the fatty acid β-oxidation (FAO) pathway, using both 
exogenous and endogenous FAs (2, 3). In some nonglycolytic 
cancers, such as prostate cancer and lymphoma, lipid-depen-
dent metabolism that supports cancer cell growth and metastasis 
becomes a prominent pathway for energy production (4–6). Can-
cer cells obtain lipids and lipoproteins through two mechanisms: 
uptake of exogenous lipids from their local microenvironment and 
de novo synthesis of endogenous lipid molecules (2). Cancer cells 
even possess some adipocyte characteristics, storing excess lipids 
in the form of lipid droplets, which supply energy to power their 
expansion and metastasis (7, 8).

Obesity, a global pandemic, is associated with an increased 
incidence of certain types of cancer, including breast cancer (BC), 
colorectal cancer (CRC), and pancreatic ductal cancer (PDAC) 
(9–11). Notably, obese adipocytes supply more fatty acids (FAs) 
to cancer cells than nonobese adipocytes, which increases the 
FAO-generated energy available for tumor growth and metastasis 
(12). Cancer-associated adipocytes (CAAs) in the tumor microen-
vironment (TME) play dynamic and sophisticated roles in facil-
itating tumor growth and drug responses (13, 14). CAAs provide 
fuel, growth factors, and cytokines and transdifferentiate into 
other stromal cells to alter tumor growth, metastasis, and drug 
responses. This Review highlights the impact of adipocytes and 
cancer lipid metabolism on cancer drug responses and discusses 
the emerging understanding of mechanisms underlying metabolic 
reprogramming in tumor responses to anticancer drugs.

Cancer-associated adipocytes
Since most cancer types arise in tissues and organs in associa-
tion with white adipose tissue (WAT), this Review will hereafter 
use the term “adipocytes” in its discussion of white adipocytes. 
The broad definition of CAAs may include several types of adi-
pocytes. Intratumoral adipocytes infiltrate into or are recruited 
to the tumor tissue. Together with other cells such as stromal 
fibroblasts, vascular cells, inflammatory cells, and immune cells, 
they constitute a portion of tumor mass (14). De novo differen-
tiated adipocytes are preadipocytes and mature adipocytes that 
differentiate from mesenchymal stem cells within the tumor tis-
sue. These cells may not exhibit discernible adipocyte features at 
their origin. However, they are influenced by factors in the TME 
to become adipocytes or adipocyte-like cells that store excessive 
lipid energy. After prolonged incubation with BC cells, mature adi-
pocytes lose their lipid content and show fibroblast-like morphol-
ogy, suggesting their contribution to cancer-associated fibroblast 
(CAF) expansion (15). Peritumoral adipocytes are a population of 
adipocytes that do not penetrate into the tumor tissue, but remain 
in close association with tumors in the surrounding area (14, 16). 
Remodeled adipocytes are created in response to cancer invasion, 
which remodels the extracellular matrix, separating adipose tissue 
from surroundings or engulfing a cluster of adipocytes to become 
part of the tumor tissue. This adipocyte-engulfing mechanism 
may exist in many cancer types, including BC, melanoma, ovari-
an cancer (OC), prostate cancer (PC), and CRC. Tumor-educated 
adipocytes are not in direct physical contact with cancer cells and 
may even reside in distal tissues and organs, yet tumor-produced 
growth factors and cytokines might influence their biological 
functions to facilitate tumor growth and spreading (17). Metasta-
sis-associated adipocytes are created when metastatic cancer cells 
travel to distal organs that may transiently or enduringly contact 
adipocytes in remote tissues. For example, cancers such as BC and 
PC often metastasize to bone marrow (BM), where adipocytes are 
one of the most abundant cell types. BM adipocytes substantially 
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cancer cell membrane and cellular 
organelle constitution (28, 29); (b) 
release of endocrine hormones, 
growth factors, adipokines, and adi-
pocytokines (refs. 30–44 and Table 
1); (c) metabolic reprogramming in 
cancer cells (2, 3); (d) protease pro-
duction necessary for cancer inva-
sion (45, 46); and (e) recruitment 
of nonadipocyte stromal cells such 
as inflammatory cells and vascu-
lar cells (47, 48). The complex and 
dynamic functions of CAAs in mod-
ulating tumor growth and metasta-
sis are summarized in Figure 1.

In the presence of CAAs, can-
cer cells may switch their metabolic 
program from glycolysis to lipid- 
dependent energy production, 
which is required for tumor growth, 
invasion, and metastasis (2). CAAs 
also produce various proteases 
to facilitate cancer invasion and 
metastasis. For example, CAAs in 
BC express high levels of metallo-
proteinase 11 (MMP11, also known 
as stromelysin-3) to facilitate can-

cer cell invasion in surrounding tissues (49, 50). As discussed 
above, adipocytes produce a range of adipocytokines and adi-
pokines that recruit and activate inflammatory cells in the TME. 
Tumor-associated macrophages (TAMs), especially inflammatory 
M2 macrophages, promote cancer invasion and metastasis (51, 
52). Recent findings show that adipocytes contribute substantial-
ly to tumor angiogenesis (3, 19, 47), a crucial process for tumor 
growth and metastasis. Thus, CAAs play complex, dynamic, and 
miscellaneous roles in modulating tumor growth and metasta-
sis (Figure 1). The healthy adipocytes located remotely from the 
tumor tissue could also heavily contribute to tumor growth by sup-
plying lipid molecules, metabolites, and growth signals. Cancer 
cachexia–related adipose atrophy may represent the consequence 
of unceasing demand of lipid supply for tumor expansion.

Cancer lipid metabolism
Nearly all healthy cells produce energy through mitochondrial oxi-
dative phosphorylation, i.e., transferring electrons from NADH or 
FADH2 to O2 via a series of electron carriers within mitochondria 
(53). In contrast to healthy cells, most cancer cells synthesize ener-
gy molecules through a high rate of glycolysis and the lactic acid 
fermentation pathway, i.e., the Warburg effect (54, 55). Although 
aerobic glycolysis produces ATP less efficiently than oxidative 
phosphorylation, this metabolic pathway generates addition-
al metabolites that support tumor growth (56). Lipid metabolic 
reprogramming in cancer cells occurs using both de novo lipo-
genic synthesis (production of triglycerides/cholesterol) and the 
catabolic pathway. Similarly to adipocytes, some cancer cells store 
excessive energy as lipid droplets that can be further broken down 
into free fatty acids (FFAs) (25, 57). Glycolysis- and glutaminolysis- 

modulate metastatic tumor growth (18). A narrower definition of 
CAAs may only include intratumoral and peritumoral adipocytes.

Intratumoral and peritumoral adipocytes make direct contact 
with malignant and nonmalignant cells in the TME. Reciprocal 
interactions between adipocytes, cancer cells, and other stromal 
cells are mediated by paracrine factors and cell surface molecules. 
CAAs produce a range of growth factors, adipokines, and adipo-
cytokines to affect cancer cell growth, survival, and migration. 
For example, CAAs frequently release fibroblast growth factors 
(FGFs), leptin, adiponectin, IL-1β, IL-6, TNF-α, CCL2, and CCL5 
(19–22). Conversely, cancer cells produce signaling molecules that 
could trigger lipolysis in intratumoral adipocytes and peritumoral 
adipocytes, and even induce a global lipolysis program that affects 
all adipose depots in the body. For example, tumor-derived TNF-α 
and IL-6 induce adipose atrophy, which manifests as cancer 
cachexia, a common systemic disease in human cancer patients 
(23). Adipose and muscular atrophy in cachexia represents imbal-
anced energy metabolism, also called wasting syndrome. Recent 
findings show that WAT browning dissipates energy, substantial-
ly contributing to cachexia development (24). In cancer patients, 
cachexia jeopardizes quality of life and tolerance to cancer drugs. 
In fact, a large number of cachexia patients may die of treatment 
rather cancer disease.

CAAs in tumor growth and metastasis
Accumulating experimental evidence shows that adipocytes 
considerably influence tumor cell behavior by stimulating prolif-
eration, migration, and survival (25–27). Several possible mech-
anisms underlying adipocyte-facilitated tumor development 
and progression have emerged, including (a) supply of lipids for 

Table 1. Examples of dipocyte-derived tumor-promoting endocrine hormones, growth factors, 
adipokines, and adipocytokines

Factor Function Cancer and metastasis Reference
Hormone
Leptin Angiogenesis, cancer cell, inflammation Promotes tumor growth, metastasis 30
Resistin Angiogenesis, cancer cell, inflammation Promotes tumor growth, metastasis 31
Adipokine
Adipsin Tumorigenesis Promotes tumor growth, metastasis 32
Visfatin Angiogenesis, cancer cell Promotes tumor growth, metastasis 33
Chemerin Tumorigenesis Promotes tumor growth, metastasis 34
Adipocytokine
IL-6 Inflammation, angiogenesis Promotes tumor growth, metastasis 35
IL-1β Inflammation, angiogenesis Promotes tumor growth, metastasis 36
TNF-α Inflammation, lymph- and angiogenesis Promotes tumor growth, metastasis 37
CCL2 (MCP-1) Inflammation, tumorigenesis Promotes tumor growth, metastasis 38
Growth factor
VEGF Angiogenesis Promotes tumor growth, metastasis 39
BMP4 Cancer cell proliferation and migration Promotes tumor growth, metastasis 40
HGF Tumorigenesis, fibrosis Promotes tumor growth, metastasis 41
IGF-1 Tumorigenesis, cancer cell survival Promotes tumor growth, metastasis 42
TGF-β Tumorigenesis, fibrosis, angiogenesis Promotes tumor growth, metastasis 43
Protease
MMP1 Extracellular matrix degradation Promotes invasion, metastasis 44
MMP2 Extracellular matrix degradation Promotes invasion, metastasis 44
MMP11 Extracellular matrix degradation Promotes invasion, metastasis 44
 

https://www.jci.org
https://www.jci.org
https://www.jci.org/129/8


The Journal of Clinical Investigation   R E V I E W

3 0 0 8 jci.org      Volume 129      Number 8      August 2019

metrial, gastric, liver, kidney, esophageal, colorectal, pancreatic, 
gallbladder, breast, ovarian, prostate, and thyroid cancers, menin-
gioma, and multiple myeloma (72). Obesity is also increasingly 
recognized as a poor prognostic marker for many cancers (73–75). 
Although the exact mechanism underlying obesity-driven high 
cancer risk and progression remains unknown, it is now acknowl-
edged that the causal factors are complex. The following possible 
mechanisms have been suggested:

Phenotypic transition of adipocytes. After prolonged exposure 
to cancer cells, obese-subject-derived adipocytes manifest phe-
notypic changes, losing their lipid contents and gaining fibro-
blast/myofibroblast-like features to contribute to the cellular 
pool of CAFs (14, 15), which are known to promote cancer inva-
sion and metastasis (52, 76, 77).

Genomic instability. Obesity increases cellular oxidative stress 
and oxidative DNA damage, thus increasing cancer risks. For 
example, in mice expressing the prostate-specific Myc protein 
(ARR2/probasin-Myc or Hi-Myc mice), high-fat diet considerably 
increases prostate cancer incidence (78).

Low-grade inflammation. Obese adipose tissue is classified 
as a low-grade chronically inflammatory tissue, characterized by 
infiltration of a high number of macrophages, neutrophils, and 
other immune cells (79–81). Cancer-associated obese adipocytes 
(CAOAs) produce high levels of inflammatory cytokines, includ-
ing IL-1β, IL-6, IL-8, IL-10, and TNF-α, to recruit and activate 
inflammatory cells (82). Moreover, TAMs are known to promote 
metastasis in multiple cancers (51).

Inhibition of apoptosis. Insulin is a potent cellular survival fac-
tor that induces proliferation and inhibits apoptosis in a broad 
range of cancer cells (83, 84). High insulin levels in obese individ-

derived citrate is frequently used for lipogenesis and cholesterol 
synthesis (58, 59). The crucial lipogenic enzymes, including acetyl- 
CoA carboxylase, fatty acid synthase (FASN), and ATP citrate 
lyase, are ubiquitously expressed in most, if not all, cancer cells (2, 
60, 61). In particular, high levels of FASN are inversely correlated 
with survival prognosis (62). Some tumors, including PDAC and 
CRC, exhibit specific alterations in lipid metabolic pathways by 
generating high levels of signaling phosphatidylinositols, which 
serve as a predictive marker for prognosis (62, 63).

Cancer cells acquire exogenous FFAs released by CAAs 
through cell surface fatty acid translocase (also named CD36) (7, 
64, 65). Coculture of OC cells with omental adipocytes results in 
upregulation of CD36 expression, resulting in accelerated FFA 
uptake by cancer cells (66). Moreover, CD36+ cancer cells were 
shown to represent a metastasis-initiating cell subpopulation (7). 
FFAs provide an efficient source of energy production through the 
FAO pathway (3). Transport of acyl-CoAs into the mitochondria by 
carnitine palmitoyl transferase 1 (CPT1) protein is the rate-limit-
ing step of FAO (67). However, metabolic stress often upregulates 
CPT1 in cancer cells, thereby enhancing FAO-mediated energy 
production (67, 68). In addition to mitochondria, FAO also occurs 
in peroxisomes within cancer cells (69). Targeting the FAO path-
way, especially CPT1, provides an attractive approach for treating 
certain cancers. In fact, CPT1 inhibitors are under development 
for treating human cancers (70, 71).

Impact of obesity on tumor growth  
and metastasis
Epidemiological studies show a strong association between over-
weight and high incidence of a number of cancers, including endo-

Figure 1. Mechanisms of cancer-associated adipocytes in tumor growth, metastasis, and cachexia. Malignant cells produce various soluble and cell 
surface signaling molecules to reprogram metabolic activity and production of growth factors/cytokines in adipocytes through endocrine, paracrine, and 
juxtacrine signaling mechanisms. After receiving signals from malignant cells, cancer-associated adipocytes (CAAs) produce various growth factors, adi-
pokines, and adipocytokines that directly affect tumor cell growth and invasion. Alternatively, the adipocyte-derived factors have a significant impact on 
nontumor cells in the tumor microenvironment to modulate tumor growth, metastasis, and cachexia. The tumor cell–triggered metabolic reprograming in 
adipocytes releases metabolic products such as free fatty acids (FFAs) that will be used as energy fuel molecules to support tumor growth and metastasis. 
Lipolysis is also one of the key processes causing adipose atrophy and cachexia in cancer patients.
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high levels of angiogenic cytokines and growth 
factors into the circulation, which switch on an 
angiogenic phenotype and initiate dormant 
tumor growth. This mechanism may explain 
why high-fat diet and obesity accelerate tumor 
growth without infiltrating into the tumor tissue. 

Increase of circulating levels of fatty acid– 
binding proteins. Recent findings show that adi-
pose fatty acid–binding protein (A-FABP) and 
FABP4 promote cancer development and metas-
tasis, partly through the mechanism of TAM 
activation (90, 91). Circulating A-FABP is elevat-
ed in obese patients with breast cancer (92).

CAOAs may play dynamic roles in pro-
moting tumor growth, metastasis, and drug 
responses. At the initial stage of tumor devel-
opment, CAOA-derived abundant adipokines 
and adipocytokines facilitate tumor formation. 
Throughout tumor progression, excessive lip-
ids stored in CAOAs provide metabolites and 
fuel for tumor expansion. At the advanced 
stage, depletion of lipid storage may switch 
CAOAs to become other cells in the TME such 
as CAFs, which promotes metastasis. Thus, the 
characteristic features of CAOAs are rather 
dynamic and unceasingly alter during cancer 
progression. Ultimately, these changes will 
result in alteration of cancer drug sensitivity.

Targeting CAAs for drug 
development
Targeted cancer therapeutics are classified 
into two categories (Figure 2A): drugs targeting 
cancer cells and drugs targeting cellular and 
molecular components of the TME.

Drugs targeting cancer cells. Cancer cells 
often overexpress and activate specific signal-
ing molecules, and drugs that block these sig-
naling pathways are commonly used to treat 
various cancers. For example, EGFR inhibitors 
and HER2-targeted drugs are successfully used 
in lung and breast cancer, respectively (93–95). 
Targeting tumor cell glycolysis is also an attrac-
tive approach for therapeutic intervention 
(96). However, development of effective ther-
apeutics has been hampered by difficulty in 

defining cancer cell–specific targets that lack expression in normal 
cells. Several potential candidates, including glucose transporter 
1 (GLUT1), hexokinases (HKs), phosphoglycerate dehydrogenase 
(PHGDH), and lactate dehydrogenase A (LDHA), are often over-
expressed in many types of cancers (97). LDHA, which catalyzes 
the conversion of pyruvate to lactate, is a key checkpoint of anaer-
obic glycolysis and an attractive therapeutic target. Therapeutic 
efficacy of several small molecules exhibiting specific inhibito-
ry activity against human LDH-5 (an isoform of LDH) has been 
validated in preclinical models (98, 99). However, none of these 
compounds has received approval for clinical uses. Similarly, ther-

uals and patients with type 2 diabetes mellitus are independently 
associated with several cancers, including CRC, BC, and PDAC 
(85, 86). Moreover, insulin also induces the expression of insulin 
growth factor-1 (IGF-1), which stimulates proliferation and surviv-
al of numerous cancers.

Angiogenesis. Obese WAT is highly vascularized, and continuous 
expansion of the adipose mass concomitantly accompanies neovas-
cularization (47, 87, 88). High density of preexisting and angiogen-
ic microvessels in obese adipose tissues promotes tumorigenesis, 
malignant progression, and even metastasis (89). Alternatively, 
obese adipocytes located distally from the primary tumor release 

Figure 2. Mechanistic principles underlying cancer treatment and obesity-associated treat-
ment resistance. (A) Mechanistic principles of cancer drugs. Conventional treatment approach-
es, including chemotherapeutics and radiation therapy, indistinguishably target malignant 
and nonmalignant cells in the tumor microenvironment and elsewhere in the body. Numerous 
targeted therapeutics targeting cancer cells have been developed, such as trastuzumab. Other 
targeted therapeutics, including antiangiogenic drugs, immune regulators, and antiinflammatory 
and antifibrotic drugs, aim to interfere with or enhance the interaction between nonmalignant 
cells and cancer cells. (B) Possible mechanisms of obese adipocytes in contributing to anticancer 
resistance. Obese adipocytes may have altered metabolism, pharmacokinetics, expression of 
tumor cell survival factors, immune cell functions, vascular functions, and drug distribution to 
affect anticancer drug responses. These alterations often lead to the development of resistance 
to cancer drugs.
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Blocking CAA lipolysis. Inhibiting lipolysis would prevent 
release of FFA and other metabolites from CAAs and thus limit lip-
id fuel supply for cancer cells. At the time of writing, drugs based 
on this principle are not clinically available.

Blocking FFA uptake by cancer cells. Cancer cells express FFA 
receptors such as CD36 on their surface, and CD36+ cancer cells have 
been defined as a subpopulation of metastasis-initiating cells (7). 
Blocking of CD36 has demonstrated beneficial effects on suppres-
sion of tumor growth and metastasis in preclinical animal models.

Inhibiting CAA adipocytokine production. CAAs produce 
altered expression profiles of various cytokines that could mark-
edly stimulate tumor cell growth and metastasis. Blocking CAA- 
derived cytokines may be an important approach for cancer therapy.

Inhibiting CAA progenitor cell differentiation. In the TME, CAAs 
might be generated through a mechanism involving differentia-
tion from mesenchymal stem cells. Blocking progenitor cell differ-
entiation would potentially inhibit tumor growth and metastasis.

These therapeutic targets have not been validated in well- 
designed clinical trials. Specific targeting of CAAs without an 
effect on other cells remains a challenging issue. Perhaps inhi-
bition of CAA lipolysis would be the most attractive approach to 
limit FFA supply to tumor cells. Unraveling the mechanism that 
underlies tumor-triggered lipolysis would be beneficial for sup-
pression of local tumor growth and global adipose atrophy. How-
ever, such approaches may also produce broad adverse effects and 
resistance to drugs. The history of experience with cancer thera-
py has taught us that monotherapy is generally less effective and 
often leads to resistance. Combination of various drugs with dif-
ferent mechanistic principles often improves therapeutic outcome 
by producing additive and sometimes synergistic effects. In this 
context, simultaneously targeting various CAA processes may be 
more beneficial if adverse effects are within a manageable level.

Obese adipocytes confer chemoresistance
Epidemiological evidence recognizes worse clinical outcomes in 
obese cancer patients compared with nonobese patients, despite 
the fact that they receive the same therapeutic agents (117–119). 
Clinical experiences demonstrate that the dose intensity of che-
motherapeutics correlates with therapeutic benefits and toxicity 
(120, 121). Most studies choose BC to correlate obesity and anti-
cancer drug responses (19, 82, 119) because the most common 
obesity-associated cancer types are breast, endometrial, and 
ovarian cancers in postmenopausal women (72). Additionally, the 
proximity of BC to adipose tissue, standardized therapeutic regi-
mens, and elimination of the gender issue have made it easier to 
choose this cancer type to study the relation between obesity and 
anticancer drug response. Several possible mechanisms have been 
proposed to explain the poor clinical outcomes observed in obese 
cancer patients (Figure 2B).

Presence of more advanced disease in obese cancer patients at the 
time of diagnosis. Advanced tumors are difficult to treat and are 
often resistant to therapeutics. Experimental data show that BC, 
OC, and PC in obese adipose tissues grow faster and become more 
invasive (22, 122, 123).

Adipose hypoxia. Obese adipose tissue may experience insuffi-
cient blood perfusion owing to a relatively low density of microves-
sels. The enlarged size of adipocytes in obese subjects increases the 

apeutics targeting GLUT1, HKs, PHGDH, and other glycolytic 
enzymes catalyzing intermediate steps are also at the preclinical 
stage of development owing to lack of cancer cell specificity (97).

Drugs targeting the TME’s cellular and molecular components.  
Antiangiogenic drugs (AADs) targeting tumor blood vessels have 
become an important therapeutic modality for treating various 
cancers (96, 100, 101). These drugs are often given to patients in 
combination with conventional chemotherapeutics (102–104). 
Another example is immunotherapy using the genetically prop-
agated tumor antigen–recognizing lymphocytes (e.g., chimeric 
antigen receptor T [CAR T] cells) (105, 106), immune checkpoint 
inhibitors (107–109), and immunocytokines. Tumor inflammatory 
and fibrotic compartments are also attractive targets for treating 
various cancers. In fact, drugs targeting tumor inflammation and 
fibrosis are also successfully used for treating human cancers (110).

Nonmalignant cells, including adipocytes, constitute a sub-
stantial proportion of the tumor mass, and their contents are 
often correlated with a fast-growing and invasive phenotype. For 
example, the fibrotic component in some PDAC can occupy more 
than 90% of the entire tumor mass, and the degree of fibrosis is 
inversely correlated with the survival prognosis (111). As noncan-
cer cells are common in the TME of all solid tumors, drugs target-
ing these cells are often used to treat various cancers and produce 
beneficial effects in human patients. For example, tumor growth 
is dependent on angiogenesis, and bevacizumab, a neutralizing 
antibody targeting VEGF, is widely used to treat various cancers 
in human patients (102). Drugs targeting TAMs, such as emactu-
zumab, a humanized anti-CSF1R neutralizing antibody, showed 
survival benefits in clinical trials for treating BC and OC (112). 
Celecoxib, an NSAID, shows clinical benefits for treating familial 
adenomatous polyposis and BC (113). Recently the FDA approved 
numerous immunotherapeutics, including checkpoint blockades 
such as antibodies blocking PD-1/PD-L1 and CTLA-4/B7-1/B7-2; 
CAR T cells; and immunocytokines. These drugs do not target 
cancer cells per se, but restore immune function in the TME to kill 
cancer cells. At the time of writing, unfortunately, drugs targeting 
CAAs are not available for treating human cancer patients.

Understanding the reciprocal interactions between cancer 
cells and adipocytes is crucial for developing effective cancer ther-
apy. The following strategies should be considered when defining 
potential CAA therapeutic targets:

Blocking cancer cell–released signaling molecules. Cancer cells 
release signaling molecules that reprogram metabolic pathways 
in CAAs surrounding tumors and in distal locations. For example, 
BC cell–derived conditioned medium increases lipolysis in adipo-
cytes, and the identity of these signaling molecules needs further 
investigation. Cancer cells produce cachexia factors including 
TNF-α and IL-6 to trigger systemic lipolysis, resulting in adipose 
atrophy. Mechanisms underlying clinically available anticachexia 
drugs such as thalidomide and megestrol acetate are partly based 
on their effects of downregulating IL-6 and TNF-α production 
(114, 115). However, clinical trials of specific blockades including 
infliximab (an anti–TNF-α neutralizing antibody) and etanercept 
(an anti-TNFR neutralizing antibody) showed no benefits against 
cachexia (52). By contrast, tocilizumab, an anti–IL-6 receptor 
antibody, demonstrated promising improvement of cachexia syn-
drome in a limited number of human patients (116).
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intercapillary distance that would limit the oxygen perfusion (124, 
125). Along this line of thought, it has been reported that blood 
flow is approximately 30%–40% lower in obese adipose tissues 
versus their lean counterparts (126). Thus, obese adipose tissues 
experience low-grade hypoxia, affecting the cellular and molecu-
lar compositions in the adipose microenvironment. For example, 
hypoxia triggers angiogenesis, inhibits macrophage migration, 
inhibits preadipocyte differentiation, augments fibrosis, and sup-
presses recruitment of immune cells (127, 128). These alterations 
would inevitably affect drug responses of a tumor growing in the 
neighborhood of obese adipose tissue. Adipose hypoxia is likely to 
constrain anticancer drug distribution within a tumor grown in the 
obese adipose tissue. Even though the tumor tissue is hypervascu-
larized, the disorganized, tortuous, and leaky tumor vasculature 
is poorly perfused, and drug perfusion is limited (129, 130). Our 
recent findings show that the hypoxic obese adipose tissue would 
further elevate tumor hypoxia (3, 131). In obese adipose tissue, the 
enlarged adipocyte size increases the intercellular distance, creat-
ing a relatively hypoxic environment (132). Growing a tumor in the 
hypoxic obese adipose tissue may further boost hypoxia in tumor 
tissues owing to hypovascularity and poor vascular perfusion.

Alteration of pharmacokinetics. Only very limited data on the 
impact of obesity on the pharmacokinetics of chemotherapeutics 
are available (133–135). For lipophilic drugs, volume distribution 
seems to increase in obese patients relative to nonobese patients. 
As the liver is the primary organ for drug clearance, blood perfu-
sion and steatosis could affect drug clearance. Obese subjects 
often have steatotic livers that might alter drug clearance (136). 
Drug clearance in the kidney might also be altered in obese cancer 
patients as a result of changes of the glomerular filtration rate (137).

Influential effects of other drugs in combination therapy settings. 
Other therapeutics are often administered to cancer patients in 
combination with chemotherapeutics. It has been shown that beva-
cizumab and other VEGF inhibitors alter distribution of chemother-
apeutics in tumors (138). In preclinical animal models, anti-VEGF 
treatment causes a higher degree of tumor hypoxia in obese animals 
compared with lean animals (3, 19). Severe hypoxia would be expect-
ed to further restrain tissue distribution of chemotherapeutics.

Alterations of metabolic program. Increasing evidence indi-
cates that intracellular ATP level is a critical factor for predicting 
chemoresistance (139–141). Hypoxia triggers lipid metabolism in 
adipocytes and cancer cells to produce high levels of ATP, contrib-
uting to chemoresistance (140).

Production of tumor-promoting growth factors and cytokines. 
Obese adipocytes often produce high levels of growth factors and 
cytokines that improve cancer cell survival and resistance to che-
motherapy (133). For example, high levels of leptin production 
in obese subjects could protect cancer cells from chemotherapy- 
induced apoptosis (142).

Enhancement of cancer fibrosis. It has been suggested that obe-
sity may augment the fibrotic reaction in tumors by promoting 
proinflammation and fibrosis crosstalk, diminishing drug delivery 
in tumors (143).

Alteration of microbiota. High-fat diet and obesity often cause 
dysbiosis and microbial imbalance that contribute to chemoresis-
tance. For example, increased Fusobacterium nucleatum in CRC 
patients contributes to high recurrence after chemotherapy (144).

Generation of drug-resistant cancer stem cells. Obese adipocytes 
upregulate expression levels of the FFA translocase CD36 and drive 
cancer cells to gain stemness features (66). Increased FFA uptake 
by elevated CD36 would reprogram metabolism and drive cell pro-
liferation and metastasis. Indeed, CD36 also defines a metastasis- 
initiating cell subpopulation (7). Cancer stem cells acquire chemo-
resistance through several mechanisms, including avoidance of 
drug exposure, avoidance of molecular targets for drugs, intracellu-
lar inactivation of drugs, remaining dormancy, repair of DNA dam-
age, enhancement of survival signals, and self-regeneration (145).

Adipocyte-derived conditioned medium protects BC and 
PDAC cells from the cytotoxic effects of gemcitabine chemother-
apy (146, 147). Similarly, culture media from adipocytes compro-
mise melanoma cell chemosensitivity to cisplatin and docetaxel 
(148). Adipocyte-derived leptin is defined as the key survival fac-
tor for counteracting the chemosensitivity (149, 150). Along this 
line, adipocyte-derived leptin also contributes to chemoresistance 
to 5-fluorouracil in pancreatic and colorectal cancers (142, 150). 
Another study shows that CAA-derived microRNA-21–containing 
exosomes confer chemoresistance of OC by targeting apoptotic 
protease-activating factor 1 (APAF1) (151).

In addition to solid cancers, adipocytes also substantially con-
tribute to chemoresistance of various leukemic cells (152–157). A 
substantial portion of the BM stroma is composed of adipocytes 
that are in close interaction with cancer cells in patients with leu-
kemia. Obesity is inversely correlated with event-free survival of 
hematological malignancies, including acute lymphoblastic leu-
kemia (ALL) and lymphoma (158–160). Obese adipocytes protect 
ALL from a variety of chemotherapeutic agents (152, 154, 155). 
It has been suggested that leukemic cells trigger oxidative stress 
in adipocytes, which in turn produce survival factors that protect 
leukemic cells from chemotherapy (154). In myeloma, mature BM 
adipocytes protect cancer cells from chemotherapy by activating 
autophagy and suppressing apoptosis (157).

In summary, multifarious and complex mechanisms are involved 
in adipocyte- and lipid metabolism–mediated chemoresistance in 
various solid and nonsolid cancers. Targeting CAAs may have a pro-
found beneficial impact on the efficacy of chemotherapeutics.

CAAs and lipid metabolism in antiangiogenic 
drug resistance
Cancer drugs targeting tumor blood vessels are frequently used 
for treating various cancers, and clinical benefits remain modest 
(161–163). Intrinsic and acquired AAD resistance often occurs in 
cancer patients and considerably hampers therapeutic efficacy 
(164, 165). Recent work from our laboratory demonstrates that 
genetically identical tumors implanted in different locations 
exhibit differential responses to AAD treatment, demonstrat-
ing a crucial role of the extratumoral tissue environment in con-
tributing to AAD resistance (3). For example, implantation of a 
CRC or PDAC tumor in adipose tissue resulted in intrinsic AAD 
resistance, whereas the same tumor grown in nonadipose tissue 
is sensitive to identical AAD treatment (3). Likewise, an AAD- 
sensitive hepatocellular carcinoma (HCC) grown in steatotic liv-
ers acquires resistance to antiangiogenic therapy, whereas HCCs 
in nonsteatotic livers remain sensitive. These preclinical findings 
link AAD resistance to the adipose tissue environment. Surpris-
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ingly, microvessels in nonadipose and adipose tumors are equally 
sensitive in response to AAD treatment (3). However, tumors in 
the adipose environment continue to grow into large masses in 
the presence of a minimal number of intratumoral microvessels. 
According to the established dogma, tumor growth is dependent 
on active angiogenesis, and inhibition of angiogenesis would 
attenuate tumor growth (101). Indeed, vascular reduction matches 
tumor inhibition in nonadipose tissues (166, 167). Thus, the unex-
pected finding from tumors grown in adipose tissue differentiates 
the antiangiogenic response from tumor growth.

How could a small number of microvessels support continu-
ous expansion of a growing tumor tissue? In response to anti-VEGF 
treatment, tumors grown in the adipose environment experience 
more severe hypoxia than those in nonadipose tissues (Figure 3). 
It appears that adipose and hepatic vasculatures are dependent on 
VEGF, and blocking VEGF produces marked vascular regression 
(88, 145). Tumor vessels originating from these tissues may genet-
ically carry their intrinsic features, including VEGF-dependent 
survival. AAD-induced vascular reduction and hypoxia would 
confine the supply of circulating glucose, jeopardizing glucose- 
dependent metabolism, i.e., the Warburg effect for energy produc-
tion (1, 54, 168). To survive and proliferate, cancer cells must use 
alternative mechanisms for energy production.

AAD-triggered hypoxia instigates three processes of lipid 
metabolism (ref. 3 and Figure 3): (a) hypoxia promotes lipolysis in 
adipocytes, which release glycerol and FFAs as final metabolites; 
(b) cancer cells increase FFA uptake by upregulating CD36; and 
(c) cancer cells undergo reprogramming of metabolic pathways, 
activating the β-oxidation pathway to produce FFA metabolism–
dependent energy production that supports continuous tumor 
growth and even metastasis (25, 169, 170). Based on these find-
ings, it would be reasonable to design a strategy that overcomes 
AAD resistance by combining antiangiogenic therapy with lipid 
metabolism inhibitors. In support of this view, combination of 
AAD with a β-oxidation inhibitor such as the CPT1 inhibitor eto-
moxir produces greater anticancer effects in an animal model of 
HCC grown in steatotic liver (3).

Clinical studies show an inverse correlation between obesity 
and clinical benefits in patients who receive antiangiogenic ther-
apy (171–174). In human BC patients, anti-VEGF treatment induc-
es high expression levels of IL-6 and FGF2, which contribute to 
AAD resistance. Again, anti-VEGF–induced hypoxia triggers the 
high expression of IL-6 and FGF2 (19). Furthermore, the number 
of adipocytes within a tumor directly correlates with poor AAD 
response. In addition to obese adipocytes, tumor-infiltrating 
inflammatory cells also contribute to high production of angiogen-
ic cytokines that are not targets of AADs (19, 175–177).

Figure 3. The mechanism of adipocyte metabolic reprogramming in anti-
angiogenic drug resistance. Treatment of tumors with antiangiogenic drugs 
reduces the tumor vascular density, leading to tissue hypoxia. Hypoxia 
triggers lipolysis in tumor-infiltrating and peritumoral CAAs to produce 
excessive FFAs. Hypoxia also upregulates the expression levels of CD36, the 
fatty acid translocase or receptor, in cancer cells to increase FFA uptake. 
Within tumor cells, FFA through the β-oxidation pathway is metabolized 
to produce ATP that supports tumor cell proliferation and migration in the 
presence of a minimal number of microvessels. This mechanism explains in 
part how CAAs contribute to antiangiogenic drug resistance.
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Conclusions and future directions
The role of adipocytes in cancer drug resistance is often over-
looked. We are beginning to understand the complex roles of 
adipocytes and lipid metabolism in modulation of anticancer 
drug sensitivity. CAAs located within the tumor tissues, in per-
itumoral regions, and even in distal tissues substantially affect 
tumor growth, metastasis, and drug sensitivity through multifar-
ious mechanisms, including paracrine, juxtacrine, and endocrine 
signaling, metabolites, and metabolic reprogramming. Thus, tar-
geting CAAs and lipid metabolism would provide an attractive 
approach for cancer therapy. However, targeting CAAs alone for 
cancer therapy is less likely to be effective, because this approach 
may not eliminate malignant cells. Based on preclinical findings, 
combination therapy consisting of cytostatic agents, targeted 
therapeutics, and lipid metabolism inhibitors would be reasonably 
more effective for treating cancers.

Cancer is a systemic disease that often causes adipose atrophy 
and cancer cachexia owing to metabolic dysfunction. In fact, cachex-
ia is responsible for about 25% of mortality of all cancer patients, 
and unfortunately no effective treatment is available despite the 
frantic efforts for cancer drug development. Targeting of the lip-
olysis pathway may be beneficial in cancer therapy through several 
mechanisms, including (a) limiting the supply of FFA to tumor cells 
to reduce their source of energy production; (b) preventing adipose 
atrophy and cachexia development; and (c) sensitizing to drugs tar-
geting cancer cells and angiogenesis. Based on these mechanisms, 
future development of new therapeutics targeting lipid metabolism 
would offer exciting opportunities for cancer therapy.
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CAAs in radiotherapy and targeted drug 
resistance
The efficacy of radiotherapy is largely dependent on the availabil-
ity of oxygen molecules that react with water radiolysis to release 
DNA-damaging reactive oxygen species (ROS) (178–180). High 
adiposity and obesity are considered chronic low-grade inflam-
mation with enduring and increased oxidative stress (181, 182). 
Several obese adipocyte-derived adipokines and adipocytokines, 
including leptin, adiponectin, TNF-α, and IL-6, induce the pro-
duction of ROS to generate oxidative stress (183–185). The high 
adiposity-linked oxidative stress reduces availability of free oxy-
gen molecules and contributes to radioresistance. As previous-
ly discussed, obese adipose tissue generally experiences tissue 
hypoxia (127, 186–189), and recruitment of obese adipocytes in 
tumor tissues further facilitates tumor hypoxia (3, 19, 124), there-
by leading to resistance to radiation therapy.

Mature adipocytes improve BC cell survival by producing 
soluble factors that activate the Chk1-mediated pathway (13). 
It appears that adipocyte-derived factors stimulate malignant 
cells to produce high levels of IL-6, which protects cancer cells 
from radiation therapy (13). Another study shows that melanoma 
cells gain radioresistance after exposure to adipocyte secretome 
through a protective mechanism involving oxidative stress and 
cell survival (13, 190, 191). At the molecular level, activation of 
the AKT pathway in cancer cells by adipocyte-secreted factors is 
involved in development of radiotherapy resistance (190). Inde-
pendent evidence from other studies further supports the causal 
link between obesity and radioresistance. For example, obesity 
contributes to radiotherapy resistance by enhancing genetic insta-
bility of esophageal adenocarcinoma (192–194). Obese adipocyte 
stem cells promote estrogen receptor–positive (ER+) BC cell sur-
vival after exposure to radiation (195).

In addition to radioresistance, adipocytes also confer drug 
resistance to targeted therapeutics. A large clinical study of 
HER2+ BC patients showed that obese patients have worse 
outcomes than normal-weight patients (196–198). A potential 
association between obesity and trastuzumab resistance was 
established based on clinical and preclinical studies: several 
studies demonstrated that adipocytes and preadipocytes com-
promise trastuzumab and tamoxifen sensitivity by producing 
high levels of tumor cell survival factors, inhibition of IFN-γ 
production in natural killer cells, and high expression of inflam-
matory cytokines and adipokines, including IL-6, TNF-α, and 
leptin (133, 199, 200).
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